Introduction

A body is said to vibrate if it has a to-and-fro motion. A pendulum swinging on either side of a mean position does sc
under the action of gravity. When the pendulum swings through the midposition, its centre of mass is at the lowest
paint and it possesses only kinetic energy. At each extremity of its swing, it has only potential energy. In the absence
of any friction, the mation continues indefinitely. It can be shown that if the swings on either side of the mean position
are very smali, it approximates to simple harmonic motion.

Usually, vibrations are due to elastic forces. Whenever a body is displaced from its equilibrium position, work is
done on the elastic constraints of the forces on the body and is stored as stain energy. Now, if the body is released,
the internal forces cause the body to move towards its equiiibrium position, if the motion is frictionless, the strain
energy stored in the body is converted into kinetic energy during the period the body reaches the equilibrium positicn
at which it has maximum kinetic energy. The body passes through the mean position, the kinetic energy is utilised to
overcome the elastic forces and is stored in the form of strain energy, and so on. '

(i) Free (Natural) Vibrations Elastic vibrations in which there are no friction and externa! forces
after the initial release of the body are known as free or natural vibrations.

(ii) Damped Vibrations When the energy of a vibrating system is gradually dissipated by friction
and other resistances, the vibrations are said to be damped. The vibrations gradually cease and the
system rests in its equilibrium position.

(iti) Forced Vibrations When a repeated force continuously acts on a system, the vibrations are said
to be forced. The frequency of the vibrations is that of the applied force and is independent of their
own natural frequency of vibratious.

(iv} Period It is the time taken by a motion to repeat itself, and is measured in seconds.
(®) Cycle Itis the motion completed during one time period.

(vi) Frequency Frequency is the number of cycles of motion completed in one second, It is expressed
in hertz (Hz) and is equal to one cycle per second.

(vii) Resonance When the frequency of the external force is the same as that of the natural frequency of
the system, a state of resonance is said 10 have been reached. Resonance results in large amplitudes
of vibrations and this may be dangerous.
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Consider a vibrating body, e.g., a rod, shaft or spring. Figure 18.] shows a massless shaft, one end of which
is fixed and the other end carrying a heavy disc. The system can execute the following types of vibrations.

(1) Longitudinal Vibrations If the shaft is Lesgesits Lisagiss seegpeseces
elongated and shoriened so that the same
moves up and down resulting in tensile and L Shaft
compressive stresses in the shaft, the vibrations ,’q \
are said to’be longitudinal, The different HYI
particles of the body move parallel to the axis f N
of the body [Fig.18.1(a)]. LT3 AR
Disc /. 4 A A
(ii} Transverse Vibrations When the shaft is ‘I‘ il O
bent alternately [Fig.18.1(b)] and tensile and i__ 1 (b}
compressive stresses due to bending result, {a) “@}}“

the vibrations are said to be transverse. The
particles of the body move approximately {©

perpendicular to its axis. Eg 18;§

(iif} Torsional Vibrations When the shaft is twisted and untwisted alternately and torsional shear
stresses are induced, the vibrations are known as torsional vibrations, The particles of the body move
in a circle about the axis of the shaft {Fig.18.1(c)].

iS OF VIBRATING SYSTEMS

For mathematical analysis of a vibratory system, it
is necessary to have an idealized model of the same
which appropriately represents the system.

Massless beam

(k)

. Massless
Basic Elements spring

For a system to vibrate, it must possess inertial and
restoring elements whereas it may possess some
damping element responsible for dissipating the
energy. '

Inertial elements These are represented by
lumped masses for rectilinear motion and by lumped (@) ©)
moment of inertia for angular motion.
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Distributed beam

Restoring Elements Massless linear or torsional
springs represent the restoring elements for rectilinear &, 1@
and torsional motions respectively.

Damping Elements Massless dampers of rigid elements may be considered for energy dissipation in a
system.

It is to be noted that tumping of quantities depends upon the distribution of these quantities in the systems,
In a spring-mass vibrating system, the spring can be considered massless only if its mass is very less as
compared to the suspended mass [Fig.18.2 (a)]. Similarly, if the mass of the beam is negligible as compared
to the end mass, lumping is possible [Fig.18.2 (b)], otherwise not [Fig.18.2 (c)].
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The number of independent coordinates required to describe a vibratory system is known as its degree of
freedom. A simple spring-mass system [Fig.18.3 (a)] or a simpie pendulum oscillating in one plane [Fig.18.3
(b)] are the examples of single-degree-of-freedom systems. A two-mass, two-spring system constrained to
move in one direction [Fig.18.3 (c)], or a double pendulum [Fig.18.3(d)] belong to two-degree-of-freedom
systems. A system which has continuously distributed mass such as a string stretched between two supports

has infinite degrees of freedom. As such, a system is equivalent to an infinite number of masses concentrated
at different points (Fig.18.4).
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In the following sections, different types of vibrations have been discussed separately.
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SECTION-1 (LONGITUDINAL VIBRATIONS)

' il AL VIBRATIONS
The natural frequency of a vibrating system may be found by any of the following methods,

1. Equilibrium Method

It is based on the principle that whenever
a vibratory system is in equilibrium, the
algebraic sum of forces and moments acting
on it is zero. This is in accordance with
D’ Alembert’s principle that the sum of the
inertia forces and the external forces on a body
in equilibrium must be zero.

Figure 18.5(a) shows a helical spring A

suspended vertically from a rigid support with B T -— -— jv -8
X

L VIS I TP IS

its free end at 4-4.

If a mass m is suspended from the free C
end, the spring is stretched by a distance A
and B-B becomes the equilibrium position (@ (b) ()
[Fig.18.5(b)]. Thus A is the static deflection of
the spring under the weight of the mass m.

Let 5 = stiffness of the spring under the
weight of the mass m.

In the static equilibrium position,

upward force = downward force

SXA=mg (18.1}

Now, if the mass # is pulled farther down through a distance x [Fig.18.5(c)], the forces acting on the mass
will be

inertia force = m¥ (upwards)

spring force (restoring force) =sx (upwards)

(x is downward and thus velocity ¥ and acceleration ¥ are also downwards)

As the sum of the inertia force and the external force on the body in any direction is to be zero (D’ Alembert’s
principle),

m¥ +5x=0 (18.2)

If the mass is released, it will start oscillating above and below the equilibrium position, The oscillation
will continue for ever if there is no frictional resistance to the motion.
The above equation can be written as

.f-!-[-{-}xzo (18.3)
m .
This is the equation of a simple harmonic motion and is analogous to

F+wixr=0 (18.4)
The solution of which is given by '
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x=Asin s+ Bcosay (18.5)
where 4 and B are the constants of integration and their values depend upon the manner in which the vibration
starts. By making proper substitutions, other forms of the solution can also be obtained as follows:

» By assuming 4 =X cos @ and B = Xsin ¢,
X =X (5in @,f cos @+ cos @, sin ¢)
x=Xsin (@t + @) (18.0)
where X and @ are the constants and have to be found from initial conditions.
» By assuming 4 = X sin f and  B=Xcosi,

x =X (sin @, sin P+ cos @,f cos )

x =Xcos{wt—1) (18,7

where X and 1 are the constants and have to be found from initial conditions.
The above solutions show that the system vibrates with frequency

¥

O = A (18.8)

which is known as the natural circular frequency of vibration.
As one cycle of motion is completed in an angle 2, the period of vibration is

2 m
T=—= 251‘——
o, 5 (18.9)

and natural linear frequency of the vibrating system,

In L1 s (18.10)

T 2 m
In general, the words “circular’ or ‘linear’ are not used in natural circular frequency ot in natural linear
frequency. Both are known as natural frequencies of vibration and are distinguished by their units,
Now let us consider different manners of starting the motion.
(i) If the motion is started by displacing the mass through a distance x, and giving a velocity v, then for
the solution of Eq. 18.5,
(=0, x=x, and % =y,
and the constants 4 and B can be found as below:
x,=A(0y+B(1) or B=x,

Taking the time derivative of Eq. 18.5,

X =A@, cos0,— B, sinwt (18.11)
v{)
Thus, v,=Adw,()-B e, (0) or A=;
"
Thus Eq. (i) can be written as
v
x=a;—sin et +x, cos @t (18.12)

mn

which is the general form of the solution,



Theory of Machines

The solution is represented graphically in Fig. 18.6.

s 15

* For the solution of Eq. 8.6 with the same initial conditions, we have

x=Xsin (@t + @)
Taking the time derivative of Eq. 18.6,
X =X, cos(ws + @)

v
v.=X@w,cos ¢ or ‘5“=Xcosrp

Squaring and adding (i) and (i),

Dividing (i) by (i)
£, X0
tan ¢ = (v" or ¢=tan"! Z2n
o vﬂ

Thus the equation can be written as

2

x=|x? +(—vi] sin (@, + ¢)
wﬂ

The solution is represented graphically in Fig. 18.6.

* In a similar way, the solution of Eq. 18.7 can be written as

2

_ 2 Vo

X= 4% | == cos{wf—y)
mﬂ

V.

where ¢ is given by, i = tan™' —2_

w g y 4’ xﬂwﬂ

Vo o
—£ 8in @l + x, cos
2y oM Ol + X, 005 apt

[or X sin{ayt + ¢) or X cos(m,t— )|

(@)

(18.13)

(ii}

(18.14)

(18.15)



(i)

(iii)
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The solution is represented graphically in Fig. 18.6.
If the motion is started by displacing the mass through a distance x, and then releasing it then at
t =0, x=x, and =0
Thus from Eqs 18.5 and 18.11,

x,=A0)+ B () or B=ux,
and 0=4 @, ()-Bw,(0) or A=0
The equation of motion
X = x,C08 (0, (18.16)
The solution is represented graphically in Fig. 18.7.
x 1 X, COS @i

g 1&'&

For the solution of Eq. 18.6, for the same initial conditions,

X, = Xsing (i)

0 = Xw,cos ¢ (i} (from Eq. 18.13)
or cos¢p=0 (X and @, cannot be zero)
or o ="950°
Therefore from (i), X=ux,

. and the equation of motion,

x = Asin (@, + 90°%)
or X =X, C08 @,
i.e., the same equation as Eq. 18.16.
For the solution of Eq. 18.7 and for the same initial conditions, the equation of motion can be obtained
which will be same as Eq. 18.16.
If the motion is started by providing a velocity of v, at the equilibrinm position then at

t =0, x=0 and =v,
Then constants can be found as before from Eqs 18.5 and 18.11, i.e.,
0=A(0)+ B (1) or B=0
.
and v, =Aw,(1)-B®,(0) or A=w—"
n

The equation of motion

x="Lsinawy (18.17)

n
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v,
-2 sin
X o ot

frig. 188

The solution is represented graphically in Fig. 18.8.
» For the sol of Eq. 18.6 and for the same initial conditions
0 = Xsing or ¢ =0°

and @ = Xo,cos{ws+ ¢)

or v, = Xw, {(p=0)
"J

or X = =
W

Therefore, equation of motion, x = Yo sifL (0, f
L
which is the same equation as Eq. 18.17.
* For the solution of Eq. 18.7 and for the same initial conditions, the equation of motion can be obtained
which will be same as Eq. 18.17.

Equation 18.6 is considered a more convenient form of the equation. In this equation, the coefficient is the
amplitude (maximum displacement) of the vibration. @ is called the phase angle and is the angular advance
of the vector with respect to the sine function.

Equation 18.7 is also a convenient form of the equation.

2, Energy Method

In a conservative system (a system with no damping), the total mechanical energy, i.e., the sum of the kinetic
and the potential energies, remains constant and therefore,

fi(KE+PE)=0
dt

We have
KE=Ln
2
and
PE = mean force x displacement
0+ sx
= X X
2
sx?

2
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t .k .
or 5m><2,rx+§sx2xx—0

or mx +sx =0

&
or w, = \,h
m

3. Rayleigh’s Method

In this method, the maximum kinetic encrgy at the mean position (where potential energy is zero) is made
equal to the maximum potentiat (or strain energy) at the extreme position (where the kinetic energy is zero),
Let the motion be simple harmonic.
Therefore, x = X sin @,
where X = maximum displacement from the mean position to the extreme position.
=@, Xcos o, Xy = W1

or  KFE at mean position = PE at extreme position

. I 1
ie. 541':r1(.(¢11")1’)2 = 53)(2 0

2 ¥ x
or m, =§ or w, =,/—
m

In vertical vibrating systems, the system vibrates
about the static equilibrium position assumed by the m
mass after its suspension, i.e., about position 8-8 (Fig, s
18.5). In case of horizontal vibrating systems (F ig. 18.9),
however, the gravity has no effect on its motion and
thus the system vibrates about the original equilibrium
position,

ACEMENT, VELOCITY AND ACCELERATION

The displacement of the mass m from the mean position at any instant is
x =X sin (@2 + @) (Eq. 18.6)
Also velocity,
v=X=Xa,cos (w7 + @)
=Xw, sin]:§+ (mnr+4a)J
and acceleration,
f=%=-Xal, sin(ws+ )
= X} sin[7 + (@1 + )]
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These relationships indicate that the velocity vector leads the displacement vector by #/2 and the
acceleration vector leads the displacement vector by & (Fig. i8.10).

SEFFECT OF THE MASS OF SPRING

So far, the mass of the spring and thus the effect of inertia have been neglected. The same may be taken into
account as follows:
Let m’ = mass of the spring wire per unit length
v = velocity of the free end of the spring at the instant under consideration
{ = total length of the spring wire
Consider an element of length &y at a length y measured round the coils from the fixed end.

1
KE of the element = 3 x mass of element X (velocity of element)?

) i
KE of the spring = (J;

r
= % X I.% x mass of spring x (velocity of free end)z]

1 . .
= —x KFE of a mass equal to that of the spring moving
with the same velocity as the free end
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This shows that the inertia effect of the spring is equal to that of a mass one third of the mass of the spring,
concentrated at its free end,

Thus

. Leas
equivalent mass at the free end = m + -:-;—
where

m; = mass of the spring

(18.18)

It can be noted that the net force on the spring at any instant tending to restore the vibrating mass to
the equilibrium position is sx which is proportional to the displacement of the mass. This is true for any
vibration due to the elastic forces. Thus in a vibrating system in which the restoring force is propertionakto
the displacement from the equilibrium position, the frequency of the system will always be given by

1 s I (mglA lJE
= (5oL mgid 1 g 18.19
I 2r¥m 27N m VA ( )

where A is the static deflection under the suspended mass m.

For example, consider a rod of length 7 suspended vertically. A mass m is suspended at the free end
{Fig. 18.1(a)). o

Then
. . mgi
Static deflection, A = -5
tc ection AE
where

A = cross-sectional area of the rod
{ = length of the rod
E = Young’s modulus of the rod material.

Frequency,
fo=L [eAE 1 4E
" 2x\mgl 2\ ml

However, if the mass of the suspended rod is also to be considered,

where m; = mass of rod
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Example 18.1 Determine the equivalent
1 spring stiffhess andthe natural
Jrequency of the following
vibrating systems when [refer
to Figs 18.11(a} to (e}] the
(a) mass is suspended to a spring
(b) mass is suspended at the bottom of two
springs in series
{c) mass is ficed in between two springs
(d) mass is fixed to the midpoint of a spring .
{e) mass is fixed to a point on a bar joining

Jree ends of two springs.
5 5 5 S
55 Sy 5

(a (b} {c o (e

@ig, 18.3%

Take
£ = 3 N/mm, 5+ = B N/mm
m = 10 kg, a=20mmand b= 12 mm
Solution

{a) As there is only one spring, the equivalent
spring stiffness is the same, te, s = s
= 5 N/mm

l 3‘
f;,zi‘jgz—,fsxw =3.56 Hz
22\m 22V 10

(b) Spring force will be the same in the two
springs but static deflections will be
different.

Let s = equivalent spring stiffness of the two
Springs.
Deflection of mass m = defiection of Spring
1 + deflection of Spring 2

mg _mg  mg

5 5 51
or
1 1 1
_— —t —
£ kil hie}
or
' 5155
S§=—
b + 52

| 5 1 5152
R R e P
2eNm 2 Y(s, +s)m

_ 1 I6x10°)x 8x10%)
2rY (5+8)x10° x10

=279 Hz

(c} The spring forces will be different but the

or

(d}

(e)

deflections will be the same of the two
springs and the mass m.

Let A=deflectionofeachspringandofmassm.
Net spring force = spring force in 1 + spring
force in 2

SA = 5A +5A

§=5,+5=5+8=13 N/mm

3
fﬁi‘ﬁ:L,’lhm =574 Hz
2r\m 2m 10

The spring stiffness of a coiled spring is
inversely proportional to the number of coils
in the spring. As the mass is fixed at the
midpoint, the number of coils becomes half
on each side.

Stiffness of spring on each side = lj—lz =2
Now the system is similar to case (iii).
Equivalent spring stiffness,

&= 23‘1 + 23[ = 4.5|

4- 3
fn:L l:i MZT_UHZ
Zfrvm 2JrV 10 o

Spring forces as well as the static defiections
of two springs will be different.

Spring forcein 1 =m
prng ' ga+b

o
a+b

Spring force in 2 = mg

Deflection of 1, A, = mg b 1
a+bs

a 1
at+bs,

Deflection of 2, A, = mg

Assuming that the deflection of 2 is more
than that of 1, deflection of mass m,

b
A=A, —(A,—A
2 — (A, 1)a+b




a |
a 1 a+b$: b
:mg ——
aths, | a 1ja+h
a+b s
_mg |a ab + b
atb|s, (a+b)s, (ath)s

mg | a’s, + abs, — abs, +b%s,
a+h (a+b)s;s;

2 g2
- e L, b
(G + b) 54 5
Total spring force = force in Spring 1 + force

in Spring 2
SA=85 A 5 4

mg {az szl b
- |=smg—
o+

5 3
(a+by | 2 %

|
X — -+ 5,mg
8| at+b s

1 {a* B
s —+—i=b+a
at+bls, 3§

or

_ |o2+0012y 1
(0.02)2+(0.012)2 10

gx10°  5x10°

=36 Hz

Alternatively,

. 1 g 1 g
_)f" _—— —_— 2 —— 2 S
2 VA 2 mg {a b* }

+
(a+by s ¥
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i,¢., the same expression.

Example 18.2  Determine the frequency
(circular} of vibration of
the systems shown in Figs

18.12(a) and (b). Neglect the

mass of the pulleys.
LS
w
2
w
[ w
54
W=mg
W=mg
(@) (b)
Fig. 18.1%

Solution
(a) Force in each spring = 2W
Deflection on mass m, A = 2 (deflection of
Spring 1 + defiection of Spring 2)

2 2w
5%

_ 4mg(51 +S2J
bk 5]
©. = g _ g{s5;) - r Sz
"TA T \dmg(s +5y)  V4s +sy)m
(b) Forcein Spring 1 =W
Force in Spring 2 = W72

Deflection of mass = defiection of Spring 1 +
deflection of Spring 2
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W

1 W /2
= — A4 —

a)ﬂ =Jg= 4313‘2
A (S] +4SZ )m

Determine  the  equation

of vibration of the water
column in g U-tube shown
in Fig. 18.13.

¥
i

R
I
[
i
i
[
>

i
A

“Fig. 1813

Solution (&) Newton's Method

Let a = area of cross section of the tube
£ = mass density of water
{ = total length of water column
Inertia force + External force = 0
Mass x Acceleration + Weight of water column
above h—h=10
(@p)x ¥ +{ax2x)pe=0
or
X+ —2£ x=10
!
Energy Method At any instant,

d
—(KE+PE)=0
i )

KE = %mv2 = %{aip))‘cz

PE =Work to transfer a water cotumn of length x
from the right-hand side to the left-hand side.

=mgx

=(axprgx

=apgx’
d

E(%aipi:z +a,0gx2)=0

%alprijf+apgx2xi=U

2
i+%g—x———0&J,, =1||‘!£

Example 184  Determine  the  natural

Jrequency of a vibrating
system shown in Fig. 18.14.

Sz
1. b
4 il
07 ; N|
e 1 -
81
§ W=mg
Fig. 18.14

Solution Force in spring |, F| = W

/
Force in spring 2, F, = Wi_l
2

(Fyxt =F,x{,)

Deflection of mass = deflection of Spring 1 + ;L

(deftection of Spring 2) 2
2
A=E+!_IX(W!,H2) —w i+(!,fiz)
5 b 55 8 5y

sy + 50 1 1)
:mg‘:e2+a|(] iy) :l

ETLE

5153
(30 1 B, + 5,)m

_ s i)
[s) + 850 /) Jm
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$ ' DAMPED VIBRATIONS

When an elastic body is set in vibratory motion, the vibrations di¢ out after some time due to the internal
molecular friction of the mass of the body and the friction of the medium in which it vibrates.

The diminishing of vibrations with time is called damping. External damping can be increased by using
dashpots or dampers. A dashpot has a piston which moves in a cylinder filled with some fluid. Shock absorbers,
fitted in the suspension system of a motor vehicle, reduce the movement of the springs when there are sudden
shocks, thus damping out the bouncing which could have occurred otherwise.

As before, consider a helical spring suspended from a fixed support (Fig, 18.15). 4-4 is the level of the
free end before the mass m is suspended. B-B is the level of static equilibrium under the weight of the mass.
The mass is attached to a dashpot to retard its movement.

It is usual to assume that the damping force is proportional to the velocity of vibration at lower values of
speed and proportional to the square of the velocity at higher speeds. Only the former case will be considered
in this chapter.

Consider the forces on the mass m when it is displaced through a distance below the equilibrium position
during vibratory motion.

Let s = stiffness of the spring

¢ = damping coefficient (damping force per unit velocity)
@, = frequency of natural undamped vibrations
x = displacement of mass from mean position at time
v = X = velocity of the mass at time /
f= % = acceleration of the mass at time ¢
When the mass moves downwards, the friction force of the dashpot acts in the upward direction.
Now, the forces acting on the mass are

- Inertia = m¥ (xpwards)
- Damping force = ¢x (upwards)
- Spring force (restoring force) = sx {upwards)

As the sum of the inertia force and the external forces on a bedy in any direction is to be zero,

mi+tcx+sx=0
. ¢ . %
or ¥+—i+—x=0 (18.20)
m m .

1t is a differential equation of the second order, Its solution will be of the form
x= A + Be™ (18.21)
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where 4 and B are some constants, ¢, and & are the roots of the auxiliary equation

a2+£a+i:0 (18.22)
n nt
[ [ 2 kY
ie., o ,=——= (—] W(;—J (18.23)
- Zm 2m m

The ratio of (EC_J to (l] represents the degree of dampness provided in the system and its square root
m m

is known as damping factor or damping ratio ¢, i e.

¢= (c/2m) _cC
sim 2sm
or
damping coefficient,
s
¢ =20sm =2 mo, = 2§E)— (18.24)
"
When {=1, the damping is known as critical. The corresponding value of damping coefficient c is denoted
by c,.
Thus under critical damping conditions,
¢=2Nsm =2mw, =25/, (18.25)
and
¢ Actual damping coefficient
{ == TRTe O Il (18.26)
¢,  Critical damping coefficient
Thus when

¢ =1, the damping is critical

{> 1, the system is over-damped
¢<1, the system is under-damped
Equation (18.20) can also be written as

Y+l w, ¥+ P x=0 (18.27)
and
o = o, ) - w?
= (-{#V¢* - Do,

The exact solution of Eq. (18.27) wil! depend upon whether the roots ) , are real or imaginary.
(i £>1,1.e., the systemn is over-damped.
The roots of the auxiliary equation are real.

Q) ; :("Civ'(:z - Nw,

x=Ae™ + Be™

Therefore, the solution is
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P N BN P (18.28)
Constants 4 and B can be determined from the initial conditions. This is the equation of an aperiodic
motion, ie., the sysiem cannot vibrate due to over-damping. The magnitude of the resultant
displacement approaches zero with time.
(ii) &< 1, i.e., the system is underdamped.
The roots of the auxiliary equation are imaginary.

& = (_gi i\Jl_ §2 }wn

Ae[—.;‘+i I—{:2 ¢t + Be{—;’ -iyl -;2 e, f

X =
= ¢ ;wn" {Ae“ﬁ?]wﬁ + Be(_i ]_g.? )m”fj|
Put
Y
JI-C o, =y,
Then ¥ = e—ga.nn:[ Aem“"' + Be""(u"']
= ¢SO A(cos @t + i sin @,7) + B(cos ot — i sin @,1)]
= &2 [(A+ B)cos ot + i(A— B)sin wyt]
= o5 [Ccos to b + Dsin w1 (18.29)
wherc

C=A+8 and D=i{4-B)
Constants  and D can be found from initial conditions. Alternatively, put
A+B=Xsingp and iA-B)y=Xcos @
Thus
x =& "% (X singcos @yt + X cos @ sin @)

= Xe ' gin(a,t + @) (18.30)
Constants X and ¢ are to be determined from initial conditions. This equation indicates that the system

oscillates with frequency @, (= \Jt — %@, ). As {is less than 1, @, is always less than .
The solution consists of three terms:
+ X, which is constant
+ %@ which decreases with time and finally ¢ =0
+ sin (@7 + ¢) which represents a repetition of motion
Thus, the resultant motion is oscillatory with decreasing amplitudes having a frequency of ),
Ultimately, the motion dies down with time.

Also,
wy

—— _ oy
linear frequency, fy .
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and
: . w
time period, T, = —&
n
let X, = displacement at the start of motion when ¢ =0

X, = displacement at the end of first oscillation when r = 7,
= Xe ¢ gin (w, T, + @)

_Fa F, 2m
= Xe M sinf w, =+ ¢
Wy
= Xe 5" sin g
A, = displacement at the end of second oscillation

= Xe "M ging

Similarty,
Xy = X595 gin .
Xn - Xe—-,’w,,xnf__. Sln‘p
X = Xe—g’w"x(nH)TJ sinqp
H
Then
X . X, X X
no_ ety 20 72 (18.31)
Xn+] Xl XZ X3

which shows that the ratio of amplitudes of two successive oscillations is constant (Fig. 18.16).

-
\’/
£
!
!
/

e —— M
r—X &in ¢

Fig. 18.16°
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(itiy {= 1, i.e., the damping is critical,
The roots of the auxiliary equation are equal, each being equal to —a, and the solution is
x={4+ Bty g ' (18.32)

Since e, approaches zero as { — oo, the motion is aperiodic. The displacement will be approaching to
7ero with time.

Figure 18.17 shows the characteristics
of motion for the three different cases
discussed. The diagram shows that in a
critically damped system. the displaced
mass returns to the position of rest in the
shortest possible time without oscillation.
Due to this reason, large guns are critically
damped so that they retumn to their original
position (after recoiting because of firing)
in the minimum possible time. If the gun
barrels are over-damped, they will take more
time to return to their original positions. _

The following points can be noted: Fig. 18.17 ./

(i) Anundamped system ({=0) vibrates

at its frequency which depends upon the static deflection under the weight of its mass (@, = Jg/lA)

(ii) When the system is underdamped ({ < 1), the frequency of the system decreases to @ (=41-C%w,)
and the time period increases to T, = 2 &/@,. The amplitudes of the vibrations decrease with time, the
ratio of successive amplitudes being constant. The vibrations die down with time,

(iii) At critical damping, {= 1, @, =0 and T, = v, The system does not vibrate and the mass m moves
back slowly to the equilibrium position.
(iv) For an overdamped system, { > 1, the system behaves in the same manner as for critical damping.

(v) {is the ratio of the existing damping in a system to that required for critical damping, i.e., {=clc,.

Displacement ————»

/% 189 - LOGARITHMIC DECREMENT

In Section 18.7, it was observed that the ratio of two successive oscillations is constant in an underdamped
system. Natural logarithm of this ratio is called logarithmic decrement and is denoted by

X .
o=in [_L} =In e = o, T,
Akl

or

5= Lo, 2z 2 21

L ﬂ'- —
o, ={w, T Co fc (18.33)
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Example 18.5 4 vibrating system consists
of @ mass of 50 kg, a spring
with a stiffness of 30 kN/m
and a damper. The damping
provided is only 20% of the critical value.
Determine the

{i) damping factor

(ii} critical damping coefficient

(i) natural frequency of damped vibrations
(iv) logarithmic decrement

{v) ratio of two consecutive amplitudes

SoI ution

=50 kg 5= 30000 N/m c=02c,

(i) C——=

(ii) c. = 2vsm = 2/30 000x 50 = 2450 N/mys
= 2.45 N/mm/s

(iiiy @, =v1-¢’0,

where

@, = JE = ,’30 000 = 24 5 rad/s
m 50

@, =J1-(0.2)" x24.5 =24 radys

(iv) & = g _ 2mx0.2 _ 128
Jt Vf'l (0.2
™ e =e* =36

H+l

Example 18.6  Determine the time in which
the mass ina dampedvibrating
system would settle down to
1750 th of its initial deflection
Jor the following data:

m =200 kg {=0225 =40 N/'mm

Also, find the number of oscillations completed
to reach this value of deflection.

Solution We know

ﬁ. =g any, Ny

3
, _( A0 14 rads
200

_ D2XIAI4NT,
or

Toual time NT, =1.26 &

7 2

- 2n = 04555

(y1-(022))x14.14

1.26
Number of 1 leted= ——= 2.7
umber of pscillations completed = 0.455

Example 18.7 In a single-degree damped
vibrating system, a suspended
mass of & kg makes 30

oscillations in 18 seconds.
The amplitude decreases to 0.25 of the initial
value after 5 oscillations. Determine the

(i) stiffness of the spring  __

(ii) logarithmic decremeni™

(iii) damping factor, and

(iv) damping coefficient

Solution
m=8kg, N=30,71=18s

30
. =—=167Hz
Ji= 1

w,=2rf, =2r x1.67=10.47 rad/s

(i) w, =\/E
m

10.47 = \E

8

. 8 =877 N/'m or

X,
(i) =2 ___XO

0.877 N/mm
X, X, X, X,

— X Ko —
X] X, X, X, A,

X,
(%Y (X XX XX,
X X X, Xy X, X

_ [A_ NEAR (L)“Zm
L, X5 025 '




6= 1n[ﬁ] =1In1.32=0.278
XS

= (.278

L2l
{iii) ﬁ
or
JI-¢ =226¢

1-¢% =510.8282

- = 0.00195
4 = 0.0442
(iv) ¢ =2muw,{
=2x8x10.47 x0.0442
= 7.4 N'm/s
Example 18.8  Amachine mounted on springs

and fitted with a dashpot has
a mass of 60 kg There are
three springs, each of stiffness
12 Nimm. The amplitude of vibrations reduces
from 45 to 8 mm in two complete oscillations.
Assuming that the damping force varies as the
velocity, determine the
(i) damping coefficient
(i) ratio of frequencies of damped and
undamped vibrations
(iii} periodic time of damped vibrations

Solution m=60kg
Stiffness of each spring = 12 N/mm
Combined stiffness, s =12 x 3 = 36 N/'mm
=36 x 10° N/m

' 3
\j‘ 36XI0 = 24,49 radss
0

Xo _ Xy X,
V¥, X,

X, X, X,
or
B2y
%, ) X, 8
2% 1o 237 - 0864

J1-¢7

Vibrations 6%

1 -{7=5288 (7
£P=0.0185
{=0.136
¢=2mw, {=2x60x2449 x 0.136
= 400 N/m/s
= 0.4 N/mm/'s

Damped frequency _ w0,

(i)

Undamped frequency @,

J'Q'(u _\/7’
=4/1-(0.136)

(i) T, = o

= ={.2595
(1= (0.136) Y x 24.49

Example 18.9 A machine weighs 18 kg and
is supported on springs and
dashpots. The total stiffness
of the springs is 12 N/mm
and the damping is 0.2 N/mm/s. The system is
initially at rest and a velocity of 120 mm/s is
imparted fo the mass. Determine the

(1) displacement and velocity of mass as a

Sfunction of time
(ii} displacement and velocity after (.45

Solution
m=18 kg v=0.12 m/s
§= 12 N/mm = 12 000 N/m
¢ = 0.2 N/mm/s = 200 N/m/s

@, = JE = Jm = 25.82 rad/s
m 18

c=2mi,
200=2x 18X 2582 x {
£=0.215

md: l_g-mn

= J1-(0.215)* x25.82 = 25.2 rad/s

(i) x= Xe ' sin(w,t + @) [Eq. (18.30)]
x=10 at =0
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v Xsinp=0
ar

sing=0 (X cannot be zero)
or

=0

x = Xe " gin(w,t)

&= Xe ' @, cos(w,1)

+ X sin w t(—{w, e 5

=012 att=0
L 012=Xw,=252X
or X=0.004 76 m =4.76 mm
Displacement, x = 4.76 ¢ 9213223824655 (25 2y)
or x=476¢75in2521¢
Velocity,
X =X e [w;c0s wg— {6, sin m,1]
=476¢ 5'55"[25.2 £0$25.2/—5.555in25.2¢]
=3[ 120 cos 25.2 ¢ — 26.4 5in 25.2 1]
(i) x=4.76 555504 in (252 x 0.4)
=4.76 ¢+ sin (10.08 rad)
=4.76 x 0.1086 x (—.6093)
=—0.315 mm
X =p 33%04 120 cos (25.2 X 0.4)
_26.4 5in (25.2 X 0.4)]
=0.1086 = [120 cos (10.08 rad) — 26.4 sin
(10.08 rad)]
= 0.1086 [-95.15 ~ (16.086)]
= —8.587 mimv/s

1810 - FORCED VIBRATIONS

Example 18.10 A4 gun is so designed that,

on firing, the barrel recoils

against a spring. A dashpot,
at the end of the recoil, allows
the barrel to come back 10 its initial position
within the minimum time without any oscillation.
The gun barrel has a mass of 500 kg and a recoil
spring of 300 N/mm. The barvel recoils 1 m on
Jiring. Determine the
(i} initial recoil velocity of the gun barrel,
and :
(i) critical damping coefficient of the dashpot
engaged at the end of the recoil stroke.

Solution

m=500kg s=300N/mm x=1m

(i) The dashpot does not operate during the
recoil.
KE of the barrel = Work done on the spring

1~ 1 5,

— Ay = = 5X

2 2

L s00xv? = % X (300 X 10%) x (1)

v=245m's
Gi) ¢=2m o,

s {300x10*

W = — =) =245m/

But @ =\ 500 s

o, =2 x 500 x 24.5 = 24 500 N/m/s
ar 24 5 Nimm/s

The forcing may be step-input, harmonic or periodic as discussed below

Step-Input Forcing

Application of a constant force to the mass of a vibrating system is known as step-input forcing. The equation
of motion will be

mi—sy=F

The effect of the constant force & on the system will be similar to the applied weight force due to the
mass of the vibrating system (Scc. 18.6, Fig. 18.5) in which the mass vibrates about B-8, i.e., the equilibrium
position assumed after the applied weight (force), the displacement being mg/s from the position 4-4. In a
similar way, on application of the force &, the system will vibralc zbout the new equilibrium position, the
displacement of which will be Fis.



Harmonic Forcing

Consider a mass attached to a helical spring and suspended from a fixed
support (no damping). Before the mass is set in motion, let B-B be the static
equilibrium position under the weight of the mass (Fig. 18.18). Assume now
that the mass is subjected to an oscillating force /7 = F, sin o, the forces acting
on the mass at any instant will be

o Impressed oscillating force  F = F,sina¢  (downwards)

¢ Inertia forces = m¥ (upwards)
¢ Spring force (restoring force) = sx {upwards)
Thus the equation of motion will be
mX +sx=F_ sin ax (18.34)

The solution of this equation will consist of the complementary function
(CF) and the particular integral (P/). CF is the solution of the equation
m¥ + sx=0and is

CF=Xsin{a + ¢}

P can be obtained by using the D operator,

(¥ + s/m)x = (F, /m}cos a¥

_(F,/m)sinar _ (F,

fmysinwt (£, Im)
DEa(sim) -l +isim)  (s/m)-@

Pf

Multiplying the numerator and denominator by m/s

. . Fuis .
Particular integral = —————; sinwt
l—{w/aw,)
Therefore, the complete solution is
. fals .
x=Xsin(w+ @)+ ————— st
1—{w/w,)

sin @

Vibrations 63@

A%

(18.35)

Thus the resultant motion is the sum of two harmonics. The constants X and ¢ of the first harmontc are

obtained from the initial conditions.
Figure 18.19 shows the motion formed by two phasors of different
lengths and rotational velocities.

Periodic Forcing

A periodic force is one in which the motion repeats itself in all details
after a certain interval of time. It can be shown mathematically that
any periodic curve of frequency @ can be represented by a series of
harmonic functions, the frequency of cach harmonic being an integral
multiple of frequency @, i.e.,

H=a. +a sin @+ a,5in 2 +ag,5in3a¥ + .._a sinnex+ ...
o 1 2 3 L]

+ @, COS (O + A0S 20N + a3 CO8 30F T ..., COS HOX T ...

Fig. 1819




ﬁm Theory of Machines

The series given by this equation is known as Fourier series. The various amplitudes a, @, ... b, b, ...,
etc.. of sine and cos waves can be found analytically when f7) is known. The harmonic of frequency w is
known as the fundamental or the first harmonic of ##) and the harmonic of frequency rw, the #th harmonic.

Thus, a periodic force is represented by

Fiy=F,+ F sino¥+ Fysin 2ex + Fysin 3ax + ... F, sinnax + ...
+ Fycos a¥ + Fcos 2ax + Fycos 3an + .._F, cos nak + ...
and the differential equation of the system becomes
mi+sx=F,+F sino+ Fysin 20+ Fysin 3o+ ... F,sinnax + ...
+Fycos a¥ + Fycos 2ax + Fycos Jax 4 ... F, cosnx + ...

The response of the complete periodic forcing s the vector sum of the responses 1o the complimentary
functions and particular solutions of the individual forcing functions as on the right-hand side of the equation.

1811 FORCED-DAMPED VIBRATIONS i

A mass m is attached to a helical spring and is suspended from a fixed LL
support as before. Damping is also provided in the system with a )
dashpot (Fig. 18.20). et s mé i sx
Before the mass is set in motion, let 53-8 be the static equilibrium
position under the weight of the mass. Now, if the mass is subjected to 8 —=k=-=-r- -B
an oscillating force £ = F; sin a¥, ihe forces acting on the mass at any A
instant will be
¢ Impressed oscillating force  F = F, sin o Fo sin at Fo sin at
(downwards)
* Inertia force = mX B #
(upwards) g’!& 1820,
* Damping force = ¢x
(upwards)
* Spring force (restoring force) = sx {upwards)

Thus the equation of motion will be
mE+ cx +sx— Fysinax =0
or mi +cx + sx = F sina¥ (18.36)
Complete solution of this equation consists of two parts, the complementary function (CF) and the
particular integral (P/}.

CF=Xe™ sin{ws+ @) [refer to Eq. (18.30)]
To obtain the £/, let
. 5 1(?
-c—=a,—§~=b, and ~L =g
m m m

Then, using the operator D, the equation becomes
(D7 +abD+ h) x = d sin ax
o sin ¢

”:27
D +aD+h
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_ dsinot
—w’ +aD+b
1 x(b—-a)“)-—aD

= p > d sin wt
(- Y+aD (- )-abd

4 sinwt(b—wz)—aDsinmr
(h-w’) —d’D?

_ 4 sin wi(h — w7 ) — aw cos
(b - 0*Y + (aw)’

Take (A — @’) = R cos @ and @ @=R sin @
Constants R and ¢ are given by

R=\(b-w’) +(@w)} and ¢=tan”

b — ?
Pl = dR(sin @ cos ¢ — cos wi sin @)
(h— @) +{a@)
ddib— iV + 2
= ‘/{ a: ) (ac;;) SiN{@¢ — @)
(h—o°)+ (aw)
= 1d sin(wf — @)
\/(b—m‘ Y+ (aw)?
= Foiim = sin(ay — @)
e
m iz}
I
= b = sin(et — )
J(s— mw® Y + (cw)’
x=CF~ Pl
Fy

Xe 5 sin (0,1 — @) + g = sin(ar (18.37)

\/{s - mow* ) +(cw)’

The damped-free vibrations represented by the first part (CF) becomes negligible with time ase <= 0. The
steady-state response of the system is then given by the second part P/,

The amplitude of the steady-state response is given by
A= 5
J{.s- ~mw’ ) + (co)
Fyls

-2 o]

(18.38)
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Fyily
= 0 {(18.39)

PRE 2
(2] (2]
w, w,

The equation is in the dimensionless form and is more convenient for analysis. It may be noted that
the numerator F, /s is the static deflection of the spring of stiffness s under a force £, The frequency of
the steady-state forced vibration is the same as that of the impressed vibrations. @ is the phase lag for the
displacement relative to the velocity vector.

E—(ﬂ 2§£
141] i [i3)
anp=—"% -m @ ___ Th_ (18.40)
bh—a” i_wz §—mw” w )
m 1- o,

The particular solution of the equation of motion can alse be obtaincd graphically as follows:
Assume that the displacement of the vibrating mass under the action of the applied simple harmonic force
F,, sin @ ¢ is also simple harmonic and lags by an amount ¢. Then

x=A sin (¥ — @)

and

x=wAcos{ay —@)=wAsn {% + (1ot — tp}:]

¥ =--aFA sin (a¥ - @)

where A is the amplitude of vibrations.
Substituting these valucs in the equation

mi +c¢x +sx=F, sin a¥

7, | =
—miey” Asin{eHt — @) + co A sin [7

e

+ (ey — qo)] +sdsinfmt — @) — Fysinwr =10
Fysinort + me” Asin{er - @) — cwAsin [g— + (et — tp)] —sdsin{af — ) =0

The forces and the vector sum of the same have been shown in Fig. 18.21. In triangle abc,

JisA - me? 4 +(coa) = Fy

or
A{s — mw? )+ {('&J-)-E =F,
or
A=— fo =
J(s - mw* }2 + {cw]:
and
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The vectors as shown in the diagram are fixed relative to one another and rotate with angular velocity .

Fig. 18.2%°

43111812 MAGNIFICATION FACTOR

The ratio of the amplitude of the steady-state response to the static deflection under the actton of force F, is
known as the magnification fuctor (MF).

2.2 2
o Fy /(s - ) + (cov)

Fyls

5

\/(s - m@* Y+ (cw)?

== (18.41)

Thus, the magnification factor depends upon

\ )
(a) the ratio of frequencies, —, and
"

(b) the damping factor.

The plot of magnification factor against the ratio of frequencies {w¥w,) for different values of { is shown
in Fig. 18.22(a). The curves show that as the damping increases or { increases, the maximum value of the
magnification factor decreases and vice-versa. When there is no damping (£ = 0), it reaches infinity at ae,
= 1, L.c., when the frequency of the forced vibrations is equal to the frequency of the free vibration. This
condition is known as resonance,

In practice, the magnification factor cannot reach infinity owing to friction which tends to dampen the
vibration. However, the amplitude can reach very high values.
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Figure 18.22 (b} shows the plots of phase angle vs. frequency ratio (a/aw,) for different values of &
Observe the following:

4 [
\+C-——D
]

I 3 rm 180° P St etk Sk
01+ ke~
w 2 a / /’ﬁ’*" i
0.3 90° - - — 2" f=1
i 0.4

¢ 60° 44
" lel=0
1.0 e |_ 1

P | 0 o
0 1 2 3 4 5 1 2 3 4 5
w /), — gy —>
(a) (o)
‘Fig.18.22.

e Irrespective of the amount of damping, the maximum amplitude of vibration occurs before the ratio ¥,
reaches unity or when the {requency of the forced vibration is less than that of the undamped vibrations.

e Phase angle varies from zero at low frequencics to 1807 at very high frequencies. It changes very
rapidly near the resonance and is 90° at resonance irrespective of damping.

s In the absence of any damping, phasc angle suddenly changes from zero to 180° at resonance.

Example 18.11 A machine partf having a mass Now,
of 2.5 kg vibrates in a viscous e Fy /s
medium. A harmonic exciting 2712 3
force of 30 N acts on the 1- [2] +[2§C‘UJ
part and causes a resonant amplitude of 14 mm @, ,
with a period of 0.22 second. Find the damping or
coefficient. Fols o
If the frequency of the exciting force is A="2_ [— = l]
changed to 4 Hz, determine the increase in the 2 W,
amplitude of the forced vibrations upon the or ,
remaval of the damper. 0.014 = 3072039
2
Selution ¢
m=2.5kg F,=30N o C= 0,526
A=14mm T=022s =
2 2 c=2maw, {=2x25x28.56x0.526
w="2 =" 2856 rads
r 022 =T75.04 N/m/s
(i} Atresonance, @ = @}, =0.075 04 N/mmy's
or
e (i) =/, x2a=4%x2x=2513rad’s
@, = i 28.56 rad’s With damper
or A= 30/2039

S =28.56
25

172 2
[l_(_zw} ] Jaxosx L]
. 28.56 28.56
s=2039N/m or 2.039N/mm



3072039
= - ==0.0155m
J(0.2258)” +(0.9248)
Without damper: {=0
30/2039

= T0.2258
", Increase in magpitude = 0.0652 - 0.0155
=00497m or 49.7mm

=0.0652 m

Example 18.12 A single-cylinder vertical
diesel engine has a mass of
400 kg and is mounted on a
steel chassis frame. The static
deflection owing 1o the weight of the chassis is
2.4 mm. The reciprocating masses of the engine
amounts to 18 kg and the stroke of the engine is
160 mm. A dashpot with a damping coefficient of
2 N/mm/s is also used to dampen the vibrations. In
the steady-state of the vibrations, determine the
(i) amplitude of the vibrations if the driving
shaft rotates at 500 rpm
(ii) speed of the driving shaft when the
resonance occurs

Salution
m =400 kg N =500 rpm
¢ = 2000 N/m/s A=24mmn
=380 mm =0.0024 m
= E}E% = 52.36 rad/s

Now sxA=mg

s x 0.0024 = 400 x 9.81
=1.635 % 10° N/m
Centrifugal force due to reciprocating parts (or
the static force),

Fy=mro? = 18 x 0.08 X (52.36)° = 3948 N
@ A= a2 (Eq. (18.38)
J(s —mw’ ) + (1:.'&))2
_ 3948
\/[1 635 x10° — 400(52.36)°
+(2000 % 52.36)°
=00072m or 72mm

(ii) Resonant speed

Vibrations 6&

i]
w=w,= i: }M:6393ra¢-’5
\lm ¥ 400

2N _ 6393
0

or
=610.5 rpm

Example 18.13 A body having a mass of
15 kg is suspended from a
spring which deflects 12 mm
under the weight of the mass.
Determine the frequency of the free vibrations.
What is the viscous damping force needed to
make the motion aperiodic at a speed of 1 mm/s?
If, when damped to this extent, a disturbing
force having @ maximum value of 100 N and
vibrating at 6 Hz is made to act on the body,
determine the amplitude of the ultimate motion.

Solution
m =15kg A =12 mm
= 100N =6 Hz

. ( 1/98 = 4,55 Hz
27: 2r N0.012

The motion becomes aperiodic when the damped
frequency is zero or when it is critically damped
{{=1)and

w=aw,= g _ 981

A 0.012
=¢.=2m @, =2 x 15 x 28.59 = 857 N/m/s
= (1.837 N/mm/s
Thus. the force needed is 0.857 N at a speed of

1 mm/s.

= 28.5% rad/s

Fy

\/(S —mw’) + (cm)2
But @=2rxf=2ax6=2377rads
and s can be found from

i
J,=—sim
2r
or 455= —l—v's/lS
2

or s=12260N/m

100
JI12 260-15x(37.72) +(857x37.7)°
=000298 m=298 mm

A=
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ISOLATION AND TRANSMISSIBILITY - -

Vibrations are produced in machines having unbalanced masses. These vibrations will be transmitted to the
foundation upon which the machines are installed. This is usually undesirable. To diminish the transmitted
forces, machines are usually mounted on springs or dampers, or on some other vibration isolating material,
Then the vibratory forces can reach the foundation only through these springs, dampers, or the isolating
material used.

Transmissibility is defined as the ratio of the force transmitted (to the foundation) to the force applied. It
is a measure of the effectiveness of the vibration isolating material.

As the transmitted force is the vector sum of the spring force (s4) and the damping force (co4) which are
at perpendicular to each other (Fig. 18.21),

F, = \J(s4)" + (cw4)*
= AJ(5)? + (cw)’
fy st +(c0.l)2

B \/(s - mw? ) + (cw)?

2
F l+(£w}
5

0 1+(2§w!m,,_)_2
@0, +olo,y

Transmissibility,

coFi_ N+,
£ J[l—(wfw,,)”]2+(zgmmn)2 (18.42)

At resonance,

L
wﬂ
1 P
€= ___v;(;g} (18.43)
when no damper is used, =0
and
- 1
- (w/w,)*) (18.44)

Transmissibility has been plotted against @' ®, for different values of ¢'in Fig.18.23. Note that



(i) when w/@,< V2, £ is more than |, i.c., the transmitted 4
force is always more than the exciting force

, the transmitied ‘} 3

(i) when /@, > V2, £ is less than |, ie
force is always less than the exciting force
(iii) when w/@,=
to the exciting force.
(iv) when o/o, > 1,

can be reduced

{v) when w/m, = V2, £ increases as the damping is

increased

Thus in a system where @/, can vary from zero to higher

V2, eis1,ie., the transmitted force is equal & 2

the transmitted force is infinite; if 1
damping is used, the magnitude of the transmitted force

Vibrations q

values, dampers should not be used. Instead, stops may be provided to limit the resonance amplitude (at

resonance, the amplification factor is infinitely).

Exampfe 18.14 A refrigerator unit having a
. mass of 35 kgis to be supported
on three springs, each having
a spring stiffness s. The unit
operates at 480 rpm. Find the value of stiffness s
if only 10% of the shaking force is allowed to be
transmitted to the supporting structure.

Solution As no damper is used,

B i
€= 2
i[l—[ﬂ]]
mﬂ
_2mx480 _\er and e=01
60
0.1= L

2
1{0‘1 —0.1[16”) }: 1
wﬂ'
e o = ...
If the positive sign is taken, = /=9 which is
not possible. @y

t6x
Therefore taking the negative sign, o T Vi1
=15.15 rad/s

o e

Equivalent stiffness,
s = 8037 N/m = 8.037 N/mm

Stiffness of cach spring = 8—-(;3—? = 2.679 N/mm

Example 1815 A machine . supported
j symmetrically on four springs
has a mass of 80 kg. The
: mass of the reciprocating
parts is 2.2 kg which move through a vertical
stroke of 100 mm with simple harmonic motion.
Neglecting damping, determine the combined
stiffness of the springs so that the forcetransmitted
to the foundation is 1/20th of the impressed force.
The machine crankshaft rotates at 800 rpm.
If. under actual working conditions, the
damping reduces the amplitudes of successive
vibrations by 30%, find the
(i) force transmitted to the foundation at
800 rpm
(i) force transmitted to the foundation at
FeSORaNCe
(iii) amplitude of the vibrations at resonance

Solution
1
= g=—=0.05
M=80kg 70
m=22kg N =800 rpm
¥= l@ = 50t mm
2
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_2nN  2px 800 83 78 \2
= " l+(2x0.0567x§'2—8]
=83.78 rad/s =— - '
2 2
In the absence of damping, 1- [%J n (2 % 0.0567 x 83'?8J
i 18.28 I8.28
WV = 0.0563
[E)_J -1 The maximum unbalanced force on the
" machine due to the reciprocating parts,
or F=mre? =2.2x0.05x (83.78)2=772.1 N
1 _5
0.05= ———— £=F
(83.78] or
— ] F
mn 00563 = —
7721
a, = 18.28 rad/s
or
or F,=4347TN
i W
’_f_ _ 'i 1828 (i) At resonance, _a;: =1
M 80
1 2
. combined stiffness, =26 739 N/m £= ____..;(;C)
=26.739 N/mm i aro0ser
1+ (2% 0.0567)"
_ 2nt x 1 = = 8.875
(i) =ln|l =< |=n 2x0.0567
V Maximum unbalanced force on the machine
IS due to reciprocating parts at resenance, i.e.,
——5 =0.003 23 when o=@,
1-¢ F=22x0.05x(18.28)2=36.76 N
~ F,=ex F=8875x3676=1326.25N
§=0.0567 . Force transmitted at resonance
(iii) Amplitude = SO
2 iffness
e VIt (2w o) 326.25

- Jl—(@/ 0, + (2ol o )

4 FORCING DUE TO UNBALANCE

All types of rotating machinery such as electric motor, turbine or a pump always consist of some amount of
unbalance left in them even though they are caref) ully balanced on balancing machines. The net unbalance in
such machines may be represented by a mass m rotating with its centre of mass at a distance ¢ from axis of
rotation {Fig. 18.24), If M is the total or the vibrating mass of the machine including the unbalanced mass m,



Vibrations

me a? sin 8

+ /me af me of sin 8
e |
M " |
X
|
<
<.>
7 T
Vibrating system Equivalent system

Fig a2y

the centrifugal force acting outwards from the centre of rotation = mew*

Assume that the system is constrained to move vertically. The equation of motion in the vertical direction
can be written as

my + ¢k + 5x = medr sina¥ (18.45)

The equation is similacto Eq. 18.36 except that £, is replaced by meer’, assuming that wis constant, the force
represented by mea? is constant. Thus the steady state solution for the cquation can be written directly, i.e.,

mewz .
X = = sin{w? — @) (18.46)
\[(s —m@° Y +{cm)
The amplitude,
A= mew’ /s
272 2
@ w
| + 26—
2=
a 2
“ w /M mel w
me —- = me =— | —
But 8 si M Ml w,
Therefore,
2
L
A _ (6‘)" ]
me (18.47)

: P 2
R

The equation provides the steady-state amplitude as a function of damping factor and frequency ratio. This
has been plotted in Fig. 18.25. It shows that at higher values of frequency ratio @ /@,, the amplitude can be
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reduced by mass and eccentricity of the rotating unbalance. The equation for phase angle remains the same
as Eq. 18.40.

5 | i
' ;
4 F----a- - Q- AEEEEE pee-e-
I 1
I 1
3 bomeci SR -
L3 I )
1 L3
A 2 f--e- T
{me/M) !
1 b WS e e

The above analysis can easily be extended to the case of a reciprocating unbalance m
(Fig. 18.26). The inertia force due to reciprocating mass is approximately equal to \
3 cos 28 ]
=mre’ | cos@+ ; (Eq. 13.18) -
r
If //r ratio is large, the second harmonic may be neglected, and the equation of motion c

may be written as

mX + ex + 5x = mra cosax

which is similar to that for rotating unbalance and can easily be analysed.

LING DUE TO SUPPORT MOTION

In case of vehicles, the excitation of the system is thr_ough the
support or base instead of directly to the mass. Assuming that the . X
support is excited by a harmonic motion (Fig. 18.27), 1

y=Ysinax (18.48)
and the displacement of mass x is more as compared to the
displacement of y in the considered position.
The équation of motion can be written as s
mi + (X =y} + s(x—)=0
or mi+ck+sy=cy+sy
=c Ywcoswt + 5 ¥sinwt (¥ = Yo coswi)
= ¥lc@ cose + 5 sinwi]
Let cw=Ksina and 5=Ksin @

/
So that K=oy +s2 and oa=tan' L= tan! ;\ 2 —"’—]
5 @,
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Thus the equation transforms to
mX +cx +sx = Yicwcosex + s siney]
= Y[Ksinex cosax + Ksina sinax)
= YK sin(ex + o)
The steady state solution is similar to that of 18,38,

¥K .
= sin(@t + o - ) (18.49)
Js —ma’ Y + (ca)?

The amplitude is
YK

A =
J(.s‘ - mw? Y + (cw)?

A4 Jy+ (cm)2

¥ om0’y + oy

which can be transformed into dimensionless form,

/1+(2g mﬂ)z (18.50)
w g ’ w :
(&) } (%)

-, 2
30
.wﬂ
Comparing Eqs (18.48) and (18.49), it is observed that the motion of mass leads the support motion
through an angle (@ — ¢) or lags by angle (¢ — c).

¢ is given by

¢ = lan

22
¢_a_—.tan---| @, 5 _tan—l 2;'2 (1851)
wﬂ
- 3]
wﬂ

¢ From the Eq. 18.50 it can be noted that in case the exciting frequency @ is very small as compared to
@, or @ is negligible, the ratio 4/Y approaches one or the complete system vibrates as a rigid body.
*» If &>>w,, a¥w, approaches infinity and thus, 4/¥ approaches zero or the body is stationary.
The ratio A/Y is usually known as displacement or amplitude transmissibility. The plots of transmissibility
and phase lag are similar to those for force transmissibility given in Figs 18.23 and 18.22(b).
Relative Amplitude Let z be the displacement of the of the mass relative to the support so that
z=x-y
or x=y+z
As  y=Ysinwt
: ¥=Ywcosw and J=-Y&siner
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The equation of motion can be written as
m(i+ 3y +ez+sz2=0

or mE + ek + sx = —my = m¥o® sinax
The equation is similar to }q. (in sec 18.45). Thus the steady state response is
2
L
wﬂ
=7 (18.52)

(2f] (2]

where Z is the steady state relative amplitude. The equation for phase angle remains same as Eq. 18.40.

N

et
——_

SECTION II (TRANSVERSE VIBRATIONS)

Natural vibrations of shafts and beams under different types of oads and end conditions have been explained
in the following sections:

8 SINGLE CONCENTRATED LOAD

In case of shafts and beams of negligible mass carrying a concentrated mass, the force is proportional to
the deflection of the mass from the equilibrium position and the relation derived for natural frequency of
longitudinal vibrations holds good, i.e.,

Ja o VE
mgl? . .
g{ for cantilevers, supporting a concentrated mass

where A =

at the free end

2.2
mga’ b .
= for simpty supported beams
JEH PLy PP
mga3b3
= T for beams fixed at both ends
3EIT
These cases have been shown in Fig. 18.28.
w w .
4 r— —»-4—b--| |-4—— a —b—-d—b—-b-i’
4 3 L 7 ¥ I
f b 2
] — - f > s s

A
—
¥

iFig 1828

A shaft supported in long bearings is assumed to have both ¢nds fixed while one in short bearings is
considered to be simply supported.
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Example 18.16 A shaft supported Jreely at 7= gt = ix(0.04)4 =0.1256 % 10 m*
the ends has a mass of 120 kg 64 64
placed 250 mm from one end. o b
The shaft diameter is 41} mm. A=l

Determine the frequency of the natural transverse 3EN

vibrations if the length of the shaft is 70U mm, 120 % 9.81 X (0.25)% x (0.45)"

. 2 = - —

E = 200 GN/m. 3% 200x10” x 0.1256 x 107 x 0.7

Solution = 0.282 % 102 m

m=120kg E=200x 10° N/m?

f=07m d=004 m f =_1__ _a(_{_:i 9.8l _ =29.68 Hx
a=025m bh=07-025=045m o 2aNA 2w ND2R2x 107

1817 UNIFORMLY LOADED SHAFT

Figure 18.29 shows a shaft supported at its cads and carrying a f&

uniform mass. ’-‘—-— X —» r_ m/unit length
{

Let m = distributed mass per unit length
{ = length of the shaft L/L/T

The shaft makes transverse vibrations due to clastic forces. At |, ! .
any instant, let it be deflected by an amount y at a distance x from - :
the end A. The vibrations being free and due 1o clastic forces, will -Fig. 18.29:
be of simple-harmonic-motion type.

From the theory of bending of shafts,

d'y

EI= EF = dynamic load per unit length

= centrifugal force per unit length.
=my &

4 ..
dy _mae” _, (18.53)

&' E

.4’
or jx;:—l“}’zo

or

A,4 m&)z

where El

The auxiliary equation is
(DM -AHy=0
This gives
D=+ dandt /i
The solution wili be of the form
y =4 sin Ax + B cos Ax + Csinh Ax ~ D cosh Ax (i)
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This 1s the general expression for the deflection in case of uniformly toaded shafis. Constants 4,8, Cand
£ have 1o be found Irom the end conditions.
Simply Supported Shaft

The boundary conditions are
{a) y=0atx~=0and/

h) d-f =0atx=0and/ (bending mement is zero at ends)
dx”
Whenx=0,y=0:8+ D=0 (i1}

Whenx={3y=0

Asin A7+ Beos AT+ Csinh Af+DcoshAl=0 (iii)
Differentiating (i) with respect to x twice,
@ =A{dcos Ax - Bsin Ax+ Ccosh Ax+ Dsinh Ax)
X
“:;"' = 2’(-A sin Ax - B cos Ax + Csinh Ax + D cosh )
X"
Whenx = (), 5
dy _0
dr*
A(-B+ D)= 0 (iv)
When x =/,
2 !
AN-AsinA/- Beos Af+Csinh A7+ Deosh AN=0 ()

From (ii} and (iv)
B=10 and D=0
Thus (iii} and {v} can be written as

Asin L7+ CsinhAf =0

and ~A sin Al + CsinhAd =0
Adding these, we get

Csinhdi=10
Subtracting,

dsmd=0
sinh A/ cannot be zero, because if A= 0, A =0

2

or mo o

£1



BT

or

it -
or —(2xfy =0
£t 1)
or =0
which means that the system does not vibrate.
C=0

Thus Eq. (i) reduces to
v=4Asin Ax

Vibrations 653

(B, C and D are zero)

Now, when A sinA/ =0, 4 cannot be zero as B, C and D are already zero and if 4 is also zero, there are
no vibrations.

sinA/=0

or

AM=0,m2nr3x,...

But M cannot be equal to zero; if so, there wili be no vibration.

_x w3
Pt
or
S
mew _r Iz 3x
or {EJ] Pt
152 ;r(E!T“‘ 2::( }"4 In
1) :7 L

}‘t

f

/
/E} 4 !Ef on

w=02nf)= 7
o {E: 4x\j’£1 9r /EI
mit’ ml*

A simply supported shaft carrying a umform}y distributed mass has maximum deflection at the mid-span.

B Smgt”
T
or
El _ 5g
ml' 3844
Then, taking the smallest value of /.
S8

5= 3384

(18.54)

This is the lowest frequency of transverse vibrations and is called the fundamental frequency.

As the equation for the displacement is y = 4 sin A f, and at node ponis, y =0
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O=4sinAx=4 sin%_r

T .
ar TX =0, e, x=0and/

This means a node at each end.
The next higher frequency is four times the fundamental frequency.

. 2
0=4sinAr=4 sin—;—x
2r

2t e
or / 0

i.e., it has three nodes, two at the ends and one at the centre,

ie.x=90,42and/

The next higher frequency is nine times the fundamental {requency.
It has four nodes dividing the shaft into three equal parts, and so on
(Fig. 18.30).

Thus a simply supported shaft will have an infinite number of
frequencies under a uniformly distributed load.

Simitarly, the cases of cantilevers and shafts fixed at both ends can
be considered. The end conditions wil} be as follows.

(i) Cantilevers

v=0atx=0
(zero deflection)
—a}—, =0 at x=90
dx
i} =0 at x=/
3,
%} =0 at x=/
1
mgl
A = -
and RES
(i1} Both Ends Fixed
y=0atx=0and/
D o gatr=0and!
e atx=0an
_ J';'xg;‘"1
and 384E]

8 . SHAFT CARRYING SEVERAL LOADS

There are two methods to find the natural frequency of the system:

1 <= s > 3
~———""3
e e ey
> -
“Fig, 18.30"

(zero slope)

(zero bending moment)

(zero shear force)




{i) Dunkerley’s method which is semi-empirical. This gives approximate results but is simple.

Vibrafions

ook

(ii) The energy method which gives accurate results but involves heavy calculations if there are many

loads.

(i) Dunkerley’s Method

Let W,, W,, W,,.... be the concentrated loads on the shaft due to masses my, my, my, ... and A, Ay, Ay,
the static deflections of this shaft under each load when that load acts alonc on the shaft. Let the shafi carry a
uniformly distributed mass of m per unit length over its whole span and the static deflection at mid-span due

10 the load of this mass be A_. Also, let
£, = frequency of transverse vibration of the whole system
£..= frequency with the distributed load acting along

Fots forrSozs -+ = frequency of transverse vibrations when cach of W W5, W;,... acts alone.

Then, according do Dunkerley’s empirical formula,

1 l ] 1 1
—_— =t —t— .t

A ST S fa
where

poo g V98BI 1| 04985

T TomNA 2 fa A
Similarly,

_ 04985 04985

2 —W-Jns *f- and 50 on.

x T [3x 981

0.5614

1

727 (049857
!

(Ay+A, + Ay +..)

A,
= —— (A] + A, + A, +....+—-"—J
(0.4985)% ‘ 1.27

0.4985

= ‘f y
1.27
(if) Energy Method

Consider a shaft with negligibie mass, carrying point loads W, W,
W; ... due to masses my, my, m;,... as shown in Fig. 18.31. Let ¥, ¥,
Vy»... be the total deflection these loads.

In the extreme positions of the shafi, it possesses maxjimum
potential energy and no kinetic energy, whereas in the mean position,
it possesses maximum kinetic energy and no potential energy. Thus,
the maximum potential energy of the shafl can be made equal 10 its
maximurm kinetic energy.

L _
Iw =3 \/384(9.‘ 2\ 34 Ja, A,
1

o A
(0.5614)°

(18.55)

{18.56)

momp M M

I

? Yz pa Va4
"Fig. 18.3%
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1 L
Maximum PE = ‘z'wi.‘*’; + ;Hz)’z +5W3y3 Fo

= %(m]yE F My 4y +)

= % my

1 > 1 5 1 2
Maximum KE =< my) T3y, +'£ mMyvy + .

2

1 a1 5 1
= Em' (wy) + Emg(wy] ¥ +—m3(0)y3_)2 +...

(92

2

2 2 3
= {(my +my5 +mpy +..)

~

2
)

— ¥ m?
5 !

where @ is the circular frequency of vibration. fiquating maximum PE and maximum KE,

g ﬁ‘)l - 3
= r=—3my
2Zm} 5 ')

g X my
w= ==
¥ my

w 1 |gZmy

. 18.57
-){H' 2}: z}r Z ;n_v" ( )
Example 18.17 A shaft of 40-mm diameter mega’ b’
and 2.5-m length hos a mass 1 YR
of 15 kg per metre length. It is
simply supported at the ends Here m =90 kg, a=08mand b=1.7m,

and carries three masses of 90 kg, 140 kg and
60 kg at 0.8 m, 1.5 m and 2 m respectively from
the left support. Taking E = 200 GN/nt’, find the
Jrequency of the transverse vibrations,

Solution

90 % 9.81 % (0.8)° x (1.7)?

T 3% 200x10° x0.1257 x 10 x 2.5

=0.008 66 m

ForA, m=140kg,a=15m b=1m
4=40mm=004m [=25m 140 X 9.81 x (1.5)% x (1)?
T T ; =
F=Zoxd® =2 x0.04) 3x200%x10° x0.1257 x107* x 2.5
64 64
) =0.1639 m
=0.1257x10°° m*
For A,m=60kg, a=2m, b=0.
We have, or Ay m g, a=2m 5m
P 0.4985 Y 60%9.81x (2)* x(0.5)
= -

T 3%200x10° x0.1257 X107 x 2.5

=0.003 12 m
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_Smgl* 5x15%9.81x(2.5" - 0.4985
- - g —h. Fur
3B4EL 384 200x10° % 0.1257 %10 J0.00866+U.01639+0.00312+M
= 0.002 98 m 2

=285 Hz

1619 WHIRLING OF SHAFTS

When a rotor is mounted on a shaft, its centre of mass does not usually coincide with the centre line of the
shaft. Therefore, when the shaft rotates, it is subjected 1o a centrifugal force which makes the shaft bend
in the direction of cccentricity of the centre of mass. This further mereases the eccentricity, and hence the
centrigugal force. In this way, the effect is cumulative and vltimately the shaft may even tail. The bending
of the shaft depends upon the eccentricity of the centre of mass of the rotor as also upon the speed at which
the shaft rotates,
Critical or whirling or whipping speed is the speed at which the shafi tends 10 /:
vibrate violently in the transverse direction.
It has been observed that if the critical speed is mstantly run through, the shaft i
again becomes almost straight. But at some other speed, the same phenomenon '
recurs, the only difference being that the shaft now bends in two bows, andsoon. 7 {y+e o
Figure 18.32 shows a rotor having a mass m attached to a shafl.
Let s = stiffness of shaft
¢ = initial cccentricity of centre of mass of rotor
m = mass of rotor Shaft
y = additional deflection of rotor due to centrifugal force
w = angular velocity of shaft.

Then ‘Fig. 18.32:
Centrifugal force =myv+e)w

Force resisting the deflection = sy

For equilibrium,

syxm(y-r-e)af:my&r’*"mem:
of v(s—ma)=me&

me{02

§— mi”

7 .

wn \: L. . RS .
"y -1 Lab set wp o foud the soliirling speed of siufls

Thus when @ = ®,, the deflection y i1s infinitcly large (resonance occurs) and the speed @ 1s the critical

speed, Le.
. fs
= = g — = - ]RSS
@ =w, Vm VA { )
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If the speed of the shafi is increased rapidly beyond the critical speed, @ > o, or (w,/w)* < 1oryis
negative. This means that the shaft deflects in the opposite direction. As the speed continues to increase, ¥
approaches the value —¢ or the centre of mass of the rotor approaches the centre line of rotation. This principle
is used in running high-speed turbines by speeding up the rotor rapidly or beyond the critical speed. When p

approaches the value of —e. the rotor runs steadily.

Example 18.18 Determine the critical speed

of the shaft of Example 18.17

loaded in the same way.
Solution The critical speed of the shaft in
revolutions per second is equal to the natural
frequency of transverse vibrations in Hz.
/,=2.85Hz
N.=2.85 rps = (2.85 x 60) rpm =t 71 rpm

Example 18.19 A rotor has a mass of 12 kg
and is mounted midway on a
24-mmdiameter horizontalshaft
supported at the ends by two
bearings. The bearings are 1 m apart. The shaft
rotates at 2400 rpm. If the centre of mass of the
rotor is 0.11 mm away from the geometric centre
of the rotor due of a certain manufacturing
defect, find the amplitude of the steady-state
vibration and the dynamic force transmitted to
the bearing. E = 200 GN/m”,

Solution  Assuming the bearings 1o be short so that
the shaft can be assumed to be simply supported,

m=12kyg i=1m
d=0.024 m A =2400 rpm
e=0.11 mm E =200 % 10° N/m*
I=E sadt = 0.024) =163%107 m*
64 64
gl 12x9.81x (1)
48E1 48 x200x10° x16.3 %10~
=0.000 752 m

A 0.000 752

®= 2rN _ 2mx 2400
60 60
Amplitude,

=251.3 rads

y= =ML 0139 mm
[f‘i | (114.2] »
w 2513
- 0.000 139 m

The negative sign indicates that the displacement
is out of phase with the centrifugal force.

[yynamic force on the bearings = sy

= mwfy

=12 x(114.2)2 x 0.000 139

=21.7N

The total load on each bearing can also be
found.

Total toad on each bearing

_mg sy 12x9.81
2 2 2

+£:69.7N
2

Example 1820 The following data relate

fo a shaft held in long

bearings.
Length of shaft =]2m
Diameter of shaft =Id4m
Mass of a rotor at midpoint =i6kg
Fecentricity of centre of mass
of rotor from centre of rotor = 0.4 mm
Medulus of elasticity of
shaft material = 200 GN/m’
Permissible stress
in shaft material = 70 x 105 N/im?

Determine the critical speed of the shaft and
the range of speed over which it is unsafe to run
the shaft. Assume the shaft to be massless.

Solution
m=16kg ¢ =0.0004 m
/=12m £ =200 x 10° N/m?
d=0014m F=70x 108 N/m?

(1) As the shaft is held in long bearings, it may
be assumed to be fixed at the ends.
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_mgl’ 16 % 9.81x (1.2 Wi =1257N
192E1 192 % 200 x 10° x - X {0.014)" Additional deflection due to this load
64 W
=0.00375 m =—1xA
1 1 9.81
fn:—\jg:—— = 8.143 Hz =2a
2r VA 22 \O0.00375 mg
The critical speed of the shaft in s is _ 1257
X = ———x 0.00375
equal to the natural frequency of transverse 16 x9.81
vibrations in Hz, i.e., N
N, = 8.143 rps = 489 rpm =0.003 m
(ii} When the shaft rotates, additional dynamic Also,
load on the shaft can be obtained from the . . _ te
celation Additional deflection, y = _a)_T_
M —=1 -1
M_[f ® ]
b ¥
+0.0004
wi 0,003 = T
g _ N, ) -1
_}_T__ X d4 d/2 or N
o4 489 Y’
W, x1.2 (—] —1=0.1333
o 8 _70x10° N
g T0014 N=459 and 525

4 :
ax(()‘[}]d) 2 Thus, the range of unsafe speed is from

459 rpm to 525 rpm.
SECTION III (TORSIONAL VIBRATION)

1820 FREE TORSIONAL VIBRATIONS (SINGLE ROTOR)

Consider a uniform shaft of length / rigidly fixed at its upper end and carrying a disc of  «gessrcssrees
moment of inertia / at its lower end (Fig. 18.33). The shaft is assumed to be massless, If
the disc is given a twist about its vertical axis and then released, it will start oscillating
about the axis and will perform torsional vibrations.
Lct 8 = angular displacement of the disc from its equilibrium position at any
instant !
g = torsional stiffness of the shaft

torque required to twist the shaft per radian within elastic limits = (E;—I)
where !

G = modulus of rigidly of the shaft material

J = polar moment of inertia of the shaft cross-section
At any instant, the terques acting on the disc are
+ Inertia torque =-j6
+ Restoring torque (spring torque) =—qgf
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Negative signs have been used as both of these forques act opposite to the angular displacement.
For equilibrium, the sum of all torques acting on the disc must be zero,

Therefore,
19+ 40=0
or
6+39-0
!
This is the equation of simplc harmonic motion,
w, = 2 {18.59)
I
f = L ‘/E’ 18.59
o 2m N (18.59a)

“3821 INERTIA EFFECT OF MASS OF SHAFT

Let /| = moment of inertia of shaft
@ = angular velocity of free end
Consider an element of length dy at a distance v from the fixed end. Then

H ,
KE of element = 3 X (MOI of element)  (angular velocity )

SR G

KE of shaft = 1xﬁ{lw)c@

] :
= 3 X [% (MOI of shaft) x {angular velocity of free end){'

= % x KE of a disc of MO/ equal to that of the shaft

attached to the free end of the shaft.

Thus to consider the inertia of the shaft, the moment of inertia of the disc is increased by an amount equal
10 one-third of that of the shaft.

Then

:EE!+i (18.60)



- MULTIFILAR SYSTEMS

Multififar systems are used to determine the moment of inertia of irregular
bodies such as unsymmetrical castings, spoked flywheels, connecting rods,
eic., for which it is quite difficult to find their moment of inertia from thetr
dimensions.

(i) Bifilar Suspension

Figure 18.34 represents a disc of mass m suspended from a rigid support with
the help of two cords.

Let [ = length of each cord

@ and b = distance of centre of mass of the disc from the points of suspension
of cords 1 and 2 respectively.

If the disc is now turned through a small angle 8about a vertical axis through
the centre of mass, the cords will inclined to the vertical. On release, the disc
will oscillate about the vertical axis and execute a torsional vibration.

Let 8 = angular displacement of disc

®,, ¢, = inclination of cords to the vertical

F,, F, = tensions in cords 1 and 2 respectively

Vibrations g

In the oscillating position, the effects of vertical accelerations can be neglected as the angles ¢, and ¢, are
small and the torque produced can be considered to be only due to horizontal torques.
Restoring torque = (horizontal force on cord 1 x a) + (horizontal force on cord 2 x b)

=-[F,asin @, + F,b sin @]
=—{Fa @+ Fb ¢)]

Wk Wa
= [ ag + bip, jl

a4+ b a+b
Wah
:‘a+h(¢1+¢2)
:_ff‘l”_("_‘ﬂﬁﬁ)
a+h\ 1 !
=_ﬂh_“x9(a+b}
{(a+h) [
mgab

Inertia torque =— 1 § = — mi’ @

(as ¢, and @, are small)

(W = Weight of disc = mg)

(] = aBand @] = bG)

Where k is the radius of gyration of the disc about the vertical axis through the centre of mass.

For equilibrium,
Inertia torque + Restoring torque =0
mk20+ ﬂg;—"’f 9=0

or
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9+—*’g9=0
I
.| [gab
. n 2 H‘2
or
o L [|gab
N

Thus radius of gyration can be found out by finding the natural
frequency of vibration of the body.

(i) Trifilar Suspension

Consider a disc of mass m (weight W), suspended by three vertical cords,
each of length /, from a fixed support as shown in Fig. 18.35. Each cord
is symmetrically attached to the disc at the same distance from the centre
of mass of the disc,

If the disc is now turned through a smail angle about its vertical axis,
the cords become inclined. On being released, the disc will perform
oscillations about the vertical axis. At any instant

let 8 = angular displacement of the disc

= inclination of the cords to the vertical
F = tension in each cord = W/3_
Inertia torque =~ 7 8 =~ mi? 6
Restoring torque = — 3 x (Horizontal compenent of force in each
string X r}
=—3xFrsing
=—3Fre¢
=—3Fr Eﬁ
)

:‘—3—’4,-)("—‘-'9
3 !

9+%9=0
1 jegr
To2e ¥
r gf‘2

{18.61)
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(as g is smali)

(v oi=8r

(18.62)



Vitrrations

Example 18.21 Determine the frequency of
torsional vibrations of the disc
shown in Fig. 18.36 ifboth the
- ends af the shaft are fixed and
the d:amerer of the shaft is 40 mm. The disc
has a mass of 96 kg and a radius of gyration of
0.4 m. Take modulus of rigidity for the shaft
material as 85 GN/m?. ;= Imand I, = 0.8 m.

i

|
:'2 (1—0058}%:—._1

I
i
i
i
1 5"

i1t —cos B}P
h Ao

i Solution
. Equilibrium Method
thig. 193@? Taking moments about 8,

Solution 1,8+ mg(J sin 9)+m,g(-f- sin BJ =
m=96kg  G=85x10°N.m? 2
k=04m d:9‘04m ( r 13}é+m319+m,glﬁ:0 (8 is small)
1= mk> =96 x (0.4) 2
= 15.36 kg. rn2 ,
—_ 0
J = _d4 X(004)4 {m-& 3 ]I’ 9+gi'[m+ )B
32 32 m
=0.251 x 104 m* . gl Mt
; : = g+=|—=—16=0
Total torsionai stiffness of shaft, ¢ =g, + ¢, / m
GJ GJ mt—-
L b
: 1 Jgm+(m /2)
=85 x10° x0.251x 1070 L+ - o= SN T v m 1
= . 1" 08 ! m+(m, /3)
=48 004 N.m Energy Method At any instant,
q d
=— —(KE+ PE) =
o= Py \/: 7 (KE+ PE)
48 004 or .
_ 1 mgl(l - cos 8}
15.36 _ d|l, -
== 1,8+ I =0
=89 Hz de} 2 +m,g5(l—c036')
L
Example 1822 Determine - the  natural N N
frequency of a simple = [ m+—= ) 1’8 + gl
pendulum (Fig. 18.37), taking dal2 3 -0
the mass of the rod into at o
. . —L l{l-cos8)
consideration. 3
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{8 is small)

ar
1 - TR N
—| m+— |1°(260)+ gi
z[m 3J (260)+ g
(m+”;’)sin99:0
ar
(m+ﬁ]zé+g(m+ﬂ]9=0m
3 3
or

Example 18.23 Find the natural frequency
of the oscillation in the cases
shown in Fig. 18.38(a) and
(b). The roller rolls on the

surface without slipping.

W W W Y WL W VO W . V. W 8

b)
i¥ig, 18,38

R R REREREREE RN

Sofution
(a) Egquilibrium (Newton s Method)
Taking moments about the instantaneous centre
A, considering small oscillations of the disc,
1,8+ (sx)r=0
of (ly+mr)@+(0rr=0

or (%mrz +mr2)5+5r29=0

2
§+-2 _0=0
or 3,
—mr
2
or é+£9=0
Im
1 2s
= o Hz
Jn 2 X3m

Energy Method

—ai(KE +PE)=0
dr

4 11092+—I-.§x2 =0

a2 2

dli(3 N\ 1 2

| ] 2 8°+—s(6r)" {=0
d:_z[zmr ] 25 }
2 Em:r‘zt?"z+—l-m»-21?§v‘2}:{)

dr| 4 2

%mrz x2f'3t")'+%sr2 X200 =0

i+250-0

3m
i.¢., the same equation as before.
{b) Newrton’s Method
Taking moments about 4.
Iaé + 2sx)(r + g} =0 (there are two springs)
o+ m?) 8+ 25 [(r + a)O)(r + @) =0

or (%mrl +mr2Jl§+23(r+a)29=0



